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Abstract
In this paper the solute and solvent enhancement factors in a hypothetical body centered cubic
(b.c.c) structure having fourteen first nearest neighbors are calculated by using a statistical
model for diffusion in dilute alloys. Inherent to the model is the assumption of the equality of
the first and second nearest neighbor jump distances, since in the b.c.c structure the difference
between these distances, respectively, is only ∼13.5%. The number of parameters required for
fitting to evaluate the enhancement factors (b and B) is substantially reduced in comparison to
existing models and therefore fewer experiments are necessary. Correlation effects are implicit
in the calculated values of b and B . The results of the fitting provide values for the frequency
ratios, the additional energies required to form a vacancy in the vicinity of a solute and for the
binding energies between solute pairs, i.e., between the reference and tracer solute. Values of b
and B in several dilute alloys were calculated at different temperatures. In general there is a
good agreement between experimental and calculated values of b and B in the alloys tested.
The equations for b and B can be used for temperatures where no experimental data exist.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diffusion enhancement of solvent and solute in dilute alloys
by a small impurity concentration has been observed and
reported in several communications [1–4]. The solvent
enhancement factor has received wide attention [5–11], but
less consideration has been given to the evaluation of the solute
enhancement factor. Theoretical evaluation of these factors for
different structures is essential to develop an insight into the
diffusion mechanism and to be able to evaluate the meaning
of the experimental data. The enhancement factors are usually
defined [1] by the expressions:

D(c) = D(0)
[
1 + b1c + b2c2 + · · ·]

D2(c) = D2(0)
[
1 + B1c + B2c2 + · · ·] ,

(1)

1 Author to whom any correspondence should be addressed.

where D(c) and D2(c) are the solvent and solute diffusivities in
a dilute alloy, bi and Bi are their diffusion enhancement factors,
respectively, and ‘c’ is the solute concentration. The factors b
and B may be evaluated experimentally from equations (1) if
D(0) and D2(0), the self and the solute diffusion coefficients in
pure solvent, are known and by measuring D(c) and D2(c) at
various solute concentrations. Solute concentrations in dilute
alloys should not exceed ∼2 at.%.

Various approaches were suggested to evaluate the above
equations by taking into consideration the influence of the
second and more remote neighbors [1, 4, 12–14]. The
equations in these models contain many unknowns, which
can be evaluated by least squares fitting to the experimental
data [8, 10, 11, 15]. For example, the expressions for ‘b’ [12]
and ‘B’ [14, 15] have 6 and 11 parameters, respectively.
In order to get accurate results by least squares fitting of

0953-8984/09/145409+11$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/14/145409
mailto:pelleg@bgumail.bgu.ac.il
http://stacks.iop.org/JPhysCM/21/145409


J. Phys.: Condens. Matter 21 (2009) 145409 J Pelleg and V Segel

equations having 6 or 11 parameters, the use of at least 7 or
12 sets of experiments, respectively, are required. It would,
however, be desirable to reduce the number of experiments
for the evaluation of b and B , which is the subject of this
communication.

In b.c.c structures the eight first nearest neighbors (FNN)
are at a

√
3

2 ≈ 0.866a, which is only ∼13.5% away from the six
second nearest neighbors (SNN), which are at a distance ‘a’
from a reference atom. Therefore, in any model for diffusion
in b.c.c metals it is reasonable to include also the effect of
the SNN. In the model suggested in this communication, the
influence of the SNN is taken into account by calculating the
diffusion parameters as if it would have been an FNN. Thus,
in our model, a hypothetical lattice with 14 FNN is assumed.
Consequently the designations of all other sites are modified
accordingly (that is, the third, fourth and fifth become second,
third and fourth neighbors, respectively). It will be shown, that
in such a model, only 4 and 6 unknowns are required for the
evaluation by least squares fitting of b and B , respectively. An
appreciable reduction in the number of experiments can thus
be achieved using our approach, without affecting significantly
the results and our understanding of diffusion behavior in b.c.c
systems.

A description of the model and the calculations are
presented in section 2. Section 3 compares the experimental
and calculated results obtained by the suggested approach and
in section 4 the work is summarized.

2. Calculations

Because of the small difference in the distances between the
FNN and the SNN, it will be assumed that these are equivalent
from the diffusion behavior point of view. Thus, the jump
distances will be considered as equal and as a consequence,
altogether 14 equi-distant FNN will be assumed in the b.c.c
structure. The model refers to a vacancy controlled diffusion
mechanism. Correlation effects are implicitly indicated in the
expression of the enhancement factor expressed as beff, but are
not explicitly specified.

Cubic lattices are isotropic and all six orthogonal
directions are equally likely, thus the probability for any one
atomic jump in the x direction is px = 1/6. The selfdiffusion
coefficient in a b.c.c structure is thus

D = 1
6�x2 f = 1

8�a2 f. (2)

�, x, f and a are the average number of jumps made
per unit time of the solvent atom, the magnitude of its
jump distance, the correlation factor and the lattice parameter,
respectively. �, the average number of jumps made by a
solvent atom in unit time at a rate ω0 is given by

� = 14ω0 exp
(
− g

kT

)
. (3)

In equation (3) g is the free energy change for vacancy
formation in the pure solvent. Similarly, the selfdiffusion
coefficient in pure solvent can be expressed as

D(0) = 14

8
a2

0ω0 exp
(
− g

kT

)
f0. (4)

In (4) a0 and f0 are the lattice parameter and correlation
factor in pure solvent, respectively. With the above, and
applying only the linear term of equation (1) we can write for
diffusion in a dilute alloy

D(c) = 1
8�(c)a2 f (c) = D(0)[1 + bc]

= 1
8 14ω0 exp

(
− g

kT

)
a2

0 f0[1 + bc]. (5)

Equation (5)—under the assumption that the concentration
and temperature dependence and the unit cell dimension can be
neglected and taken as being equal to those in pure solvent—
can be written as

�(c) = 14ω0 exp
(
− g

kT

)
[1 + bc] f0

f (c)
. (6)

Expanding f (c) in a series as

f (c) = f0 + ∂ f

∂c

∣
∣
∣
∣
c=0

c + · · · (7)

neglecting the higher terms in c in equation (7), applying the
approximation of 1

1+x = 1−x +x2+· · · for x < 1, multiplying
equation (6) by (1 + bc) and again neglecting the higher terms,
one can write for �(c)

�(c) = 14ω0 exp
(
− g

kT

) [
1 + c

(
b − A

f0

)]
. (8)

A denotes ∂ f
∂c of equation (7). For details see appendix A.

Let us denote (b − A/ f0) as beff, which takes into account
correlation effects. Thus equation (8) can be expressed as

�(c) = 14ω0 exp
(
− g

kT

)
[1 + cbeff]. (8a)

2.1. Calculation of b

We shall follow the procedure outlined by Le Claire in his
classic work [12] and reproduce his equilibrium equations for
solvent diffusion in dilute solid solutions:

ω′
4 = ω′

3 exp

[−�g1

kT

]
(9a)

ω′′
4 = ω′′

3 exp

[−�g1

kT

]
(9b)

ω3 exp

[−�g1

kT

]
= ω4 exp

[−�g2

kT

]
(9c)

ω6 = ω5 exp

[−�g2

kT

]
(9d)

ωi refer to the various solvent jump frequencies, and �gi is
the additional free energy (i.e. the negative of the binding
energies) to form a vacancy at FNN and SNN sites of
the solute atom, respectively. Figure 1 is a schematic
illustration of the hypothetical structure using the notation
of our model which considers FNN and SNN as being
equivalent. The reference solute (RS) in its initial position
is indicated by ‘0’ and the other sites are labeled by their
relative locations from the RS (i.e., being first, second, third

2
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Figure 1. A schematic illustration of two unit cells in the
hypothetical BCC structure showing the possible solvent jumps and
their respective frequencies. The atom marked ‘0’ is the reference
solute, and the numbers represent the coordination of the sites
relative to the reference solute.

or fourth neighbors, respectively). All atomic sites from which
a solvent jump can be made to the FNN of the RS are taken
into account. Equations (9) take the following form when
applying our concept regarding jump distances and considering
the additional free energies for vacancy formation as �g1 =
�g2 = �g. The assumption that the additional free energies
to form a vacancy at an FNN and an SNN site to the RS are
about the same is a consequence of the fact that their distances
from the RS differ by no more than ∼13.4%. Therefore it is
considered that the influence of RS on the tendency for vacancy
formation on these sites is about the same. Equations (9a)–(9d)
can be written as

ω′′
4 = ω′′

3 exp

[−�g

kT

]
ω4 = ω3

ω′
4 = ω′

3 exp

[−�g

kT

]
ω6 = ω5 exp

[−�g

kT

]
.

(10)

The equality of ω4 and ω3 is the consequence of the
model which assumes that the free energy changes for vacancy
formation in (9c) are equal.

Jumps remove an FNN vacancy to second, third and fourth
neighbors away from the influence of the RS. Frequencies are
influenced by the vacancy RS binding. But the probability of
jumps to the second coordination shell from the first one is
assumed to be just the same as to the third or to the fourth
shell, thus the following jump frequencies are equal

ω′
3 = ω5 = ω′′

3 . (10a)

Vacancy jumps executing an exchange with a solvent atom
with the frequencies indicated in (10a) are escape jumps from
an FNN site. As a consequence of this assumption the jump
frequencies

ω6 = ω′
4 = ω′′

4 (10b)

are also equal. See appendix B.

Let Ni be the number of solute atoms and p the fraction
of these that have vacancies at an FNN associated with them:
if p is given by

p = 14 exp

(
− g + �g

kT

)
(11)

the number of solvent jumps per unit time affected by these
associated vacancies is then

Ni p(6ω3 + 3ω′
3 + ω′′

3 + 3ω5) (11a)

and on the basis of equation (10a) this can be rewritten as

Ni p(6ω3 + 7ω5). (11b)

Appendix C presents details of equation (11a).
Let us now consider jumps of vacancy–solvent exchanges

that are outside the first coordination shell of the solute
atoms. If NS is the total number of crystal sites, the solute
concentration can be expressed as c = Ni

Ns
. The number of

solvent sites which are outside the first coordination shell of
the solute atoms is then

Ns − (z + 1) Ni = Ns(1 − 15c), (12)

where z is the coordination number in the hypothetical
structure. nv free vacancies are randomly distributed on Ns(1−
15c) solvent sites. The number of vacancies on SNN sites is
then

nv
12Ni

NS(1 − 15c)
, (13a)

since there are 12 such sites, and thus the number of vacancy–
solvent exchanges is

nv
12Ni

NS(1 − 15c)
(4ω6 + 10ω0) . (13b)

The four ω6 jump frequencies are actually ω′
4 type of

which two have a
√

3
2 and two ‘a’ jump distances, respectively.

According to equation (10b), however, these are equal to ω6.
All jump distances from a site 2 to an FNN are assumed to be
equal and of ω′

4 type. ω0 is the pure solvent jump frequency.
Similarly for the 24 third and 8 fourth neighbor sites of a

solute atom, the relations for the solvent–vacancy exchanges
are, respectively

nv
24Ni

NS(1 − 15c)
(2ω6 + 12ω0) (14)

and

nv
8Ni

NS(1 − 15c)
(ω6 + 13ω0) . (15)

In (14), the two ω6 solvent vacancy exchanges from third
neighbor sites both remove the solvent from the FNN of the RS.
Twelve jumps of the vacancy occur by ω0 frequencies away
from the effect of the RS. In equation (15) the jump frequency
is actually of ω′′

4 type, but according to (10b) it is also equal
to ω6.

3
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The following relation is obtained by summing up
equations (13b)–(15)

nv
8Ni

Ns(1 − 15c)
(13ω6 + 64ω0) . (16)

The number of sites in the lattice where free vacancies
beyond the fourth neighbors may reside is

nv − nv
44Ni

Ns(1 − 15c)
. (17)

Each of these vacancies may execute fourteen ω0 jumps
resulting in the following solvent free-vacancy exchanges

[
nv − nv

44Ni

Ns(1 − 15c)

]
14ω0. (18)

With the above expressions the total solvent jump rate per
solvent atom can then be written as:

�(c) = 1

Ns(1 − c)

[
14Ni exp

(
− g + �g

kT

)
(6ω3 + 7ω5)

+ nv
8Ni

Ns(1 − 15c)
(13ω6 + 64ω0)

+
(

nv − nv44Ni

Ns(1 − 15c)

)
14ω0

]
. (19)

Following Le Claire [12], nv can be expressed as

nv = Ns(1 − 14c) exp

(−g

kT

)
. (20)

Substituting for nv in equation (19), using the approxima-
tion of 1

1−15c = 1 + 15c since c is less than 2%, retaining only

the linear terms in c, expressing Ni in terms of c (c = Ni
Ns

) and
with equation (11a) expressed as Ni p(6ω3 +7ω5) based on re-
lation (10a), an equation for the solvent jump rate per solvent
atom can be obtained as

�(c) = 14ω0 exp
(
− g

kT

) [
c

{(
6
ω3

ω0
+ 7

ω5

ω0

)
exp

(
−�g

kT

)

+ 1

7

(
52

ω6

ω0
− 143

)}
+ 1

]
. (21)

After substituting for ω5 from relation (10) one obtains

�(c) = 14ω0 exp
(
− g

kT

) [
c

{
6
ω3

ω0
exp

(
−�g

kT

)

+ 1

7

(
101

ω6

ω0
− 143

)}
+ 1

]
. (21a)

Equating equations (8a) and (21a) one obtains

c

{
6
ω3

ω0
exp

(
−�g

kT

)
+ 1

7

(
101

ω6

ω0
− 143

)}
+ 1 = cbeff + 1.

(22)
Thus beff can be expressed as

beff = 6
ω3

ω0
exp

(
−�g

kT

)
+ 1

7

(
101

ω6

ω0
− 143

)
. (23)

2.2. Calculation of B

In a schematic illustration of a b.c.c structure with the RS at
site ‘0’ the possible jumps of a solute atom to various sites and
their respective frequencies were indicated and the equilibrium
equations were expressed [14, 15] as

ω23 exp

(
�g1

kT

)
= ω24 exp

(
�gp1

kT

)
(24a)

ω′
23 exp

(
�g2

kT

)
= ω′

24 exp

(
�gp2

kT

)
(24b)

ω12 exp

(
�g2

kT

)
exp

(
�gp1

kT

)

= ω21 exp

(
�g1

kT

)
exp

(
�gp2

kT

)
(24c)

�gi denote the free energy required to form a vacancy at the
appropriate sites, as indicated earlier �gp1 and �gp2 are the
additional free energies for breaking solute–solute bonds at
first and second nearest neighbors, respectively (i.e., that of
tracer solute and RS). These energies enable the respective
tracer solute–vacancy exchanges. The meaning of ωi j was
described earlier [14, 15]. Briefly, of these, ω12 type jumps
are associative to form FNN solute–solute pairs, but they are
also dissociative jumps of the SNN solute–solute pair. ω21 is
the reverse jump of the above. ω24 type jump frequencies are
also associative forming FNN solute–solute pairs, whereas the
ω23 ones indicate their reverse jumps. ω′

23 type frequencies
represent SNN jumps to fourth neighbors of the RS, and their
reverse jumps occur with frequencies of ω′

24. All other, more
remote, jumps occur with frequencies ω2. In the above method
to calculate B [14, 15], 11 unknowns are present and therefore
at least 12 experimental sets are needed for their meaningful
evaluation by fitting. In the suggested hypothetical b.c.c model
with 14 FNN, the solute–vacancy exchanges of the respective
solutes occur with the jump frequencies indicated in figure 2.
The following equalities can be written:

�g1 = �g2 = �g (25a)

�gp1 = �gp2 = �gp. (25b)

The rationale of equation (25b) is the same as the one
that permitted the equalities in (25a), namely, the additional
free energies of breaking solute–solute bonds at FNN and
SNN are assumed to be the same. This also implies that
equations (24a)–(24c) can be reduced to

ω24

ω23
= ω′

24

ω′
23

(26a)

ω12 = ω21 (26b)

ω23 exp

(
�g

kT

)
= ω24 exp

(
�gp

kT

)
. (26c)

Expression (25b) is a consequence of the same
consideration as (25a) as indicated above in calculating ‘b’.
Expression (26b) follows from (24c) because of the assumed
equalities in expressions (25a) and (25b).

The approach presented above for solvent jumps can also
be used for calculating B , but the solvent atoms jump will be

4
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Figure 2. A schematic illustration of two unit cells in the
hypothetical BCC structure showing the possible tracer–solute jumps
and their respective frequencies. The atom marked ‘0’ is the
reference solute, and the numbers represent the coordination of the
sites relative to the reference solute.

replaced by tracer–solute exchanges with the vacancies. Tracer
atoms may occupy all the lattice sites except those already
occupied by the reference solutes. In brief, let Ni be the
number of solute atoms and p the fraction of these that have
vacancies at an FNN associated with them: if p is given by

p = 14 exp

(
− g + �g

kT

)
(27)

the number of such bond vacancies in the entire crystal is
Ni p. The number of tracer atoms which can be FNN to bond
vacancies is then Ni p exp(

−�g
kT ) (for details see appendix A

in [14]). The total number of tracer jumps associated with bond
vacancies is

Ni p exp

(
−�g

kT

) [
6ω12 + (4ω24 + 3ω′

24) exp

(
−�gp

kT

)]
.

(28)
Equation (28) is a consequence of the following

considerations:

(a) A tracer at an SNN (site ‘2’) can execute an exchange with
a bond vacancy at site ‘1b’ with a frequency of ω24. There
is a probability for three such jumps. Further, the same
bond vacancy can perform an exchange with a tracer at
site ‘4’ with the same frequency, and thus four jumps with
ω24 frequencies are possible. All these jumps have a jump
distance of a

√
3

2 . Realizing these jumps does not require
extra energy for breaking a bond between tracer–RS, but
energy is required for pairing tracer and RS at FNN sites.

(b) Tracers at FNN sites may also exchange with a vacancy
at site ‘1b’ with a frequency of ω12. There is a possibility
for three such jumps of a

√
3

2 length. Further tracers on
the front cube at sites x , −y and −z distant away can
exchange places with a vacancy at site ‘1b’. Three such
ω12 jumps are possible. Tracer exchanges at sites ‘1’
with such a vacancy are assigned by a ω12 frequency
despite the difference in the jump distance. Altogether

then there are six jumps with ω12 frequencies. These
tracer–vacancy exchanges involve dissociating the tracer
from the influence of the RS and pairing two solutes. Thus
it is required to break bonding of the tracer from the RS to
realize such exchanges and to reform a tracer solute pair.
This is a consequence of the bond vacancy being an FNN
of both the tracer and the RS. The energies for dissociation
of the tracer from the RS and its re-association by the ω12

exchange cancel (since bond forming and bond breaking
of two solutes are of the same magnitude, but opposite in
signs).

(c) There is a probability for three additional tracer jumps
with ω′

24 frequency to a ‘1b’ vacancy. The tracers are third
neighbors to RS and a distance ‘a’ away from site ‘1b’(i.e.,
at −x , y and z).

Now let us consider the contribution of jumps from
second, third and fourth neighbors by following the approach
outlined in section 2.1. There are nv free vacancies randomly
distributed on Ns(1 − 15c) sites of the crystal. The number of
vacancies at SNN per crystal site outside the first coordination
shell is then nv12Ni

NS(1−15c) and the number of vacancy–tracer
exchanges is:

nv12Ni

NS(1 − 15c)

(
3ω23 exp

(
�gp

kT

)
+ 11ω2

)
. (29)

In (29), a tracer at ‘1b’ can exchange place with a vacancy
at an SNN site with a ω23 frequency having a jump length of
a

√
3

2 . This tracer–vacancy exchange dissociates two solutes,
the tracer and the RS. A vacancy in an SNN site can also
perform an additional two jumps, but of length ‘a’, to tracers
at FNN sites such as ‘1a’, again involving breaking tracer–
RS bonds. Vacancies at SNN sites have the option to jump
away with ω2 frequencies. Eleven such jumps are possible.
Exchange jumps with ω2 are reserved to solute diffusion in
a pure solvent. Jumps of vacancies away from site ‘2’ are
considered in this model to represent such diffusion.

Tracer–vacancy exchange can occur with a vacancy
residing at a third neighbor site with ω′

23 frequency. Of the

two ω′
23 type jumps one exchange is of length a

√
3

2 while the
second is of ‘a’. Both involve dissociation of tracer–RS bonds.
Twelve ω2 type jumps of remote tracers to a third neighbor
vacancy (escape jumps of the vacancy) can occur resulting in

nv24Ni

NS(1 − 15c)

(
2ω′

23 exp

(
�gp

kT

)
+ 12ω2

)
. (30)

A tracer at an FNN site can execute a single ω23 type
jump exchanging with a vacancy at a fourth neighbor site.
Realization of this jump requires breaking of the bond between
tracer and RS. Tracers from remote sites can exchange location
with such a vacancy with ω2 frequencies. Thirteen such jumps
are possible resulting in

nv8Ni

NS(1 − 15c)

(
ω23 exp

(
�gp

kT

)
+ 13ω2

)
. (31)

Therefore, tracer exchanges with vacancies in second,
third and fourth neighbor sites that break up the bond between

5
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RS and tracer are given by summing up equations (29)–(31)
resulting in equation (32) below:

nv4Ni

Ns(1 − 15c)

[
exp

(
�gp

kT

)
[11ω23 + 12ω′

23] + 131ω2

]
.

(32)
In a manner similar to equation (18) the number of

jumps associated with the free vacancies outside the fourth
coordination shell can be expressed by replacing ω0 with ω2

as (
nv − nv44Ni

Ns(1 − 15c)

)
14ω2. (33)

The total jump rate of the tracer–solute, �(c), can be
obtained by summing up the contributions from (28), (32)
and (33)

�2(c) = 1

Ns (1 − c)

{
Ni p exp

(
−�g

kT

)

×
[

6ω12 + (4ω24 + 3ω′
24) exp

(
−�gp

kT

)]

+ nv4Ni

Ns(1 − 15c)

[
exp

(
�gp

kT

)
[11ω23 + 12ω′

23] + 131ω2

]

+
[

nv − nv44Ni

Ns(1 − 15c)

]
14ω2

}
. (34)

Above it was indicated [14] that

nv = Ns(1 − 14c) exp

(
− g + �g

kT

)
. (35)

Substituting for p and nv, neglecting the higher terms in c
and bringing ω2 before the bracket it is possible to write

�2(c) = 14 exp

(
− g + �g

kT

)
ω2

{
c

[
exp

(
−�g

kT

)

×
[

6
ω12

ω2
+

(
4
ω24

ω2
+ 3

ω′
24

ω2

)
exp

(
−�gp

kT

)]

+ 1

7

[
exp

(
�gp

kT

) (
22

ω23

ω2
+ 24

ω′
23

ω2

)
− 137

]]
+ 1

}

(36)

and with relation (26c) the following expression is obtained for
�2(c)

�2(c) = 14 exp

(
− g + �g

kT

)
ω2

{
c

[
exp

(
−�g

kT

)

×
[

6
ω12

ω2
+

(
4
ω24

ω2
+ 3

ω′
24

ω2

)
exp

(
−�gp

kT

)]

+ 1

7

[(
22

ω24

ω2
exp

(
−�g

kT

)
+ 24

ω′
23

ω2

)

× exp

(
�gp

kT

)
− 137

]]
+ 1

}
. (37)

With equations similar to (2)–(4) but applied for solute
diffusion [12, 16] it is possible to write

�2(c) = 14ω2 exp

(
− g + �g

kT

)
(38a)

D2(0) = 14

8
a2

0ω2 exp

(
− g + �g

kT

)
f2(0) (38b)

D2(c) = 1
8�2(c)a

2 f 2(c) = D2(0)[1 + Bc]
= 14

8
a2

0ω2 exp

(
− g + �g

kT

)
f2(0). (38c)

Expressing (38c) in terms of �2(c) a relation similar to
equation (6) is obtained in terms of solute enhanced diffusion
i.e.

�2(c) = 14ω2 exp

(
− g + �g

kT

)
[1 + Bc] f2(0)

f2(c)
. (39a)

Here f2(0) and f2(c) are the solute correlation factors
in pure solvent and in the dilute alloy, respectively.
Equation (39a) can be written following the procedure outlined
for the solvent enhancement as expressed in (A.6) by

�(c) = 14ω0 exp

(
− g + �g

kT

) [
1 + c

(
B − F

f2(0)

)]
.

(39b)
Let us denote (B − F/ f2(0)) as B effective, then

equation (39b) can be rewritten in terms of Beff as

�(c) = 14ω0 exp

(
− g + �g

kT

)
[1 + cBeff]. (39c)

From (39c) and (37) we can get for Beff

Beff = exp

(
−�g

kT

) [
6
ω12

ω2
+

(
4
ω24

ω2
+ 3

ω′
24

ω2

)

× exp

(
−�gp

kT

)]
+ 1

7

[(
22

ω24

ω2
exp

(
−�g

kT

)

+ 24
ω′

23

ω2

)
exp

(
�gp

kT

)
− 137

]
. (40)

This equation can be reduced by one parameter by
assuming that ω24

∼= ω′
24, resulting in

Beff = exp

(
−�g

kT

) [
6
ω12

ω2
+ 7

ω24

ω2
exp

(
−�gp

kT

)]

+ 1

7

[(
22

ω24

ω2
exp

(
−�g

kT

)
+ 24

ω′
23

ω2

)

× exp

(
�gp

kT

)
− 137

]
. (41)

3. Calculated and experimental enhancement factors

The equations for solvent and solute diffusion enhancement
factors in dilute alloys [1–5, 14] were presented in this work
by simpler relations in the form of equations (23) and (41)
without sacrificing the accuracy of the calculated values
compared to those of the experimental. This was achieved
by the use of parameters requiring fewer experiments for their
evaluation. The relations derived for the enhancement factors
are applicable for dilute alloys.

3.1. Evaluation of bef f

Equation (23) allows beff to be expressed by two frequency
parameters, �g and ω0. �g is the additional free energy
required to form a vacancy in the presence of a solute.

6
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It is considerably simpler than the expression for b given
in the literature (see for example [12]) with only four
unknowns, which must be evaluated by fitting equation (23)
to experimental data. If one is interested only in the frequency
ratios of equation (23), there are only three unknowns to be
evaluated by fitting (thus fewer experiments for data collection
are required). The value of b is obtained experimentally
from diffusion measurements at various solute concentrations
according to equation (1). One should note that in the
experimental enhancement factor values, correlation effects
are inherently already included. Thus in reality values of
beff are measured. Knowledge of D(0) is also required to
evaluate b. The temperature dependence of b can be obtained
from experiments performed at different temperatures. Once
the parameter �g is evaluated equation (23) can be used to
calculate new values of b at other temperatures, for which no
experimental values were determined, by fitting.

�g can be obtained from the difference between the
energy of vacancy formation, Ef(0) in pure solvent and the
one in the presence of solute, Ef(c). The values of the
Efs are assumed to be equal to 0.6Q [17], where Q is the
activation energy for selfdiffusion. This is a consequence
of Q being equal to the sum of Ef and Em, the energy of
migration [17–19]. Contrary to �g in this relation, Ef and
Em are enthalpies whereas �g is a free energy term; the
entropy term is often omitted from the expression relating
the vacancy concentration to its formation energy. Omission
of this term and taking it as ∼=0 often gives an adequate
approximation [20]. Some degree of approximation is always
necessary if complicated expressions are to be reduced to forms
that can be related to useful calculations or for comparison with
experimental results. More precise expressions by refining
the method of evaluating �g will not necessarily bolster our
understanding of the suggested model. In the present work
this problem did not arise because �g was obtained by fitting
and was not evaluated from the difference in the activation
energies as mentioned above, since the number of unknowns
in equation (23) is quite small.

In equation (23) average frequency ratios are given. These
are the parameters obtained by fitting. However if the jump
frequencies themselves are also of explicit interest, ω0 has to
be evaluated. ω0 is the pure solvent jump frequency. It can
be easily found from diffusion measurements as follows: the
jump rate, ω0, is related to Em which is ∼0.4Q [20] by

ω0 = ν0 exp

(
− Em

kT

)
. (42)

The frequency of vibrations, ν0, is related to D0, the pre-
exponential factor, by [17, 20]

D0 = ν0 f0a2 (43)

and can be evaluated from (43). Alternatively, as indicated
above, ω0 can be obtained by fitting to equation (23)
requiring additional experimental data. Required parameters
can be taken from known data if available in the literature
or experimentally determined. With these assumptions
direct evaluation of the enhancement factor can be obtained

at temperatures for which no experimental b is available.
Wherever experimental data of the energies of vacancy
formation and migration are available, these could be used in
preference to values obtained from their relation with Q. In
table 1 the various parameters are listed which were used to
calculate b. Clearly, the experimental values of b which were
used for the fitting according to equation (23) are also shown.
The frequency ratios are average numbers, since the fitting is
within the temperature range of the experimental data of b. A
test performed by iteration in one of the systems (Zr in Zr–V)
at two temperatures, i.e., at 1167 and 1318 K, indicates that
the average frequency ratios are very close to those calculated
by equation (23). A difference of ∼−2.6% of ω3

ω0
from the

average value listed in table 1 and almost no change in ω6
ω0

were obtained. The relatively few experimental measurements
in b.c.c. systems on which we may exercise equation (23)
dictated the choice of data listed in table 1. The table lists
the calculated values of b at the temperatures indicated for the
following systems: V diffusion in V/Co [20], Zr diffusion in
Zr/V [8], Zr diffusion in Zr/Mn [21] and V diffusion in V/Zr [9]
dilute solid solutions, respectively.

One could note that the beff values can be applied to
calculate a solute correlation factor using the relation of Le
Claire [12] as

fi = 1 − Di

D(0)

6 f0(
b + 15 + 1.53b+9.18

b+9.06

) . (44)

The correlation was tested in the Zr/Zr–V system at two
temperatures (1167 and 1318 K), using this equation. 0.71
and 0.78 are obtained respectively, which compare favorably
with those listed in [7]. Thus it seems that in the tested cases
solvent–vacancy exchange rate is not perturbed significantly
due to the presence of the solute. To see whether, in the systems
listed in the table, weak perturbation prevails or not is a matter
of testing, which is out of the scope of this manuscript.

It is evident from table 1, more specifically from the
frequency ratios that in the Zr systems examined vacancy–
FNN solvent atom exchanges with ω3 are higher by orders of
magnitude than solvent–vacancy jumps with ω6. This means
that the escape jump tendency of a vacancy from the influence
of the RS is much less favorable than its stay at an FNN site
to the RS. Contrary to this observation, in the V system this
tendency is only somewhat higher in the V/V–Co case (where
ω3 ∼ 8ω6) and is almost the same in the V/V–Zr one (where
ω3 ∼ 0.8ω6). Further one should note that in these systems
�g is expressed in small negative numbers, whereas for the Zr
systems a positive �g was calculated.

3.2. Evaluation of B

B can be expressed by equation (40) having the following
parameters: four frequency ratios, �g and �gp. This can
be compared with the number of parameters required in the
non-hypothetical b.c.c structure [14, 15]. Equation (40) can
be reduced by one parameter, as indicated, to equation (41).
The assumption of ω24

∼= ω′
24 is appealing since these

associative jump frequencies to an FNN site of a solute atom
(RS) either from SNN, third or fourth nearest neighbor sites

7
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Table 1. Comparison of calculated and experimental solvent enhancement factors beff.

bcalc by fitting bexp. (bcal. − bexp.)/bexp. Temperature (K) �g ω3
ω0

ω6
ω0

V in V–Co

−0.15 1.82 0.93
39.68 38.22 [20] 3.82 × 10−2 1220
30.60 33.35 −8.25 × 10−2 1433
28.69 30.03 −4.46 × 10−2 1496
24.06 21.43 1.23 × 10−1 1694
26.91a 37.83b −2.89 × 10−1 1563
25.63a 44.99b −4.30 × 10−1 1618

V in V–Zr

−0.27 1.15 0.03
29.18 28.7 [9] 1.67 × 10−2 1578
26.03 26.5 −1.77 × 10−2 1633
23.26 24.4 −4.67 × 10−2 1688
21.03 19.9 5.68 × 10−2 1738
19.29a 15.0 0.29 1783
16.95a 16.9 2.96 × 10−3 1848
15.65a 17.7 −0.12 1888

Zr in Zr–V

0.36 84.19 0.30
−2.39 −4.14 [8] −0.42 1167

0.07 0 1223
2.79 2.80 −3.57 × 10−3 1281
4.61 5.09 −9.43 × 10−2 1318
7.53 8.71 −1.35 × 10−1 1375
10.40a 10.41 −9.61 × 10−4 1428
13.05a 13.60 −4.04 × 10−2 1476

Zr in Zr–Mn

0.33 168.45 0.20
19.96 19 [21] 5.05 × 10−2 1173
25.25 25 0.01 1223
30.81 31 −6.13 × 10−3 1273
36.59 37.5 −2.43 × 10−2 1323
43.02a 40.8 5.44 × 10−2 1373
9.32a 46.5 6.06 × 10−2 1423

a Calculated using the parameters shown; experimental values not used for the fitting.
b Data seem to be unreliable. From extrapolated experimental curve and deleting the non-reliable points
the values are ∼27.04 and ∼25, respectively.

are not under a strong differing binding influence of the RS
before executing the jump itself. Solute diffusion in pure
solvent can provide experimental values of �g, as indicated
above, since it represents the difference between the energies of
vacancy formation of self and solute diffusion in pure solvent
respectively. Similarly to equation (42), ω2, the jump rate is
related to Em ∼ 0.4Q2 by

ω2 = ν0 exp

(
− Em

kT

)
, (45)

where Q2 is the solute activation energy for diffusion in pure
metal.

The three unknown frequencies (following the assumption
of ω24

∼= ω′
24) in the form of the ratios ω12

ω2
, ω24

ω2
and ω′

23
ω2

have
to be evaluated by fitting. Also �gp is evaluated during the
fitting procedure. �g was taken from the fitting results to
equation (23). The meaning of �g is the same as in the case

of solvent enhancement by solute. With the obtained data
of ωi

ω2
and �gp, Beff can be calculated at temperatures for

which no experimental values exist. In table 2, Beff values
calculated for solute diffusion in the Zr/V [8], V/Co [22],
Zr/Mn [21, 22] and V/Zr [9] systems are shown. Table 2
also lists the various parameters which were evaluated by
fitting to equation (41) of the experimental B values. The
agreement between calculated and experimental B values in
the systems tested, except in the Co/V, is very good. The
poor agreement between calculated and experimental results
in this system is of an experimental nature as seen in [22], and
some of the experimental B values are beyond the accepted
error in diffusion work; in particular the scatter was great at
1521 K.

Suggesting this hypothetical model for b.c.c structure is
quite reasonable since the SNN have almost the same distance
in the unit cell as the FNN, with a difference less than 15%.

8
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Table 2. Comparison of calculated and experimental solute enhancement factors Beff.

V in Zr–V (fitting with four parameters equations (40))

Bcalc Bexp [8] (Bcal. − Bexp.)/Bexp Temp. (K) �g �gp
ω12
ω2

ω24
ω2

ω′
23

ω2

ω′
24

ω2

−7.49 −6.8 1.01 × 10−1 1166 −0.27 0.40 2.48 0.004 0.08 —
−11.53 −12.9 −1.06 × 10−1 1204
−14.96 −14.8 1.08 × 10−2 1245
−17.68 −17.2 2.79 × 10−2 1286
−22.06 −21.7 1.66 × 10−2 1379
−23.9 −23.8 4.20 × 10−3 1435
−25.08 −25.5 −1.65 × 10−2 1480

V in Zr–V (fitting with five parameters equation (41))

Bcalc Bexp. [8] (Bcal. − Bexp.)/Bexp Temp. (K) �g �gp
ω12
ω2

ω24
ω2

ω′
23

ω2

ω′
24

ω2

−7.49 −6.8 1.01 × 10−1 1166 −0.27 0.40 0.55 0.005 0.08 3.86
−11.53 −12.9 −1.06 × 10−1 1204
−14.96 −14.8 1.08 × 10−2 1245
−17.68 −17.2 2.79 × 10−2 1286
−22.06 −21.7 1.66 × 10−2 1379
−23.9 −23.8 4.20 × 10−3 1435
−25.08 −25.5 −1.65 × 10−2 1480

Mn in Zr–Mn

Bcalc Bexp [21, 22] (Bcal − Bexp.)/Bexp Temp. (K) �g �gp
ω12
ω2

ω24
ω2

ω′
23

ω2

ω′
24

ω2

−19.02 −19 1.05 × 10−3 1173 0.33 0.51 4.81 1.35 0.03 —
−23.35 −23.4 −2.14 × 10−3 1223
−26.81 −26.8 3.73 × 10−4 1273
−29.62 −29.6 6.76 × 10−4 1323
−31.93 −31.9 9.40 × 10−4 1373
−33.87 −33.9 −8.85 × 10−4 1423
−35.50 −35.5 0. 1473

Zr in V–Zr

Bcalc Bexp [9] (Bcal. − Bexp.)/Bexp Temp. (K) �g �gp
ω12
ω2

ω24
ω2

ω′
23

ω2

ω′
24

ω2

12.71 11.9 6.81 × 10−2 1578 0.36 −1.68 5.38 × 10−8 4.36 1.23 × 105 —
13.54 13.7 −1.17 × 10−2 1628
14.78 15.9 −7.04 × 10−2 1683
16.5 16.8 −1.79 × 10−2 1738
18.55 18.5 2.70 × 10−3 1788
21.18 19.5 8.62 × 10−2 1838
24.15 25.1 −3.78 × 10−2 1883

Co in V–Co

Bcalc Bexp [22] (Bcal. − Bexp.)/Bexp Temp. (K) �g �gp
ω12
ω2

ω24
ω2

ω′
23

ω2

ω′
24

ω2

215 213 9.39 × 10−3 1337 −0.15 2.42 7.36 1.26 × 10−8 1.2 × 10−20 —
91.28 113 −1.92 × 10−1 1403
64.34 64 5.3 × 10−3 1438
37.40 48 −2.21 × 10−1 1521

This is about the accepted error in experimental diffusivity data
and the diffusion parameters. The results of the calculations
are, in each system tested, considerably below this error except
for the Co/V alloys at two temperatures as mentioned. For the
fitting procedure the number of experimental points required
is significantly reduced without sacrificing the accuracy of
the results. This can be seen in tables 1 and 2 where
experimental enhancement factors are compared with the
calculated values.

4. Summary

A model for calculating solvent and solute enhancement
factors by solute in dilute b.c.c structures has been suggested.
The model considers a hypothetical structure having 14 FNN.
The merits of the model are:

(a) Simpler equations for b and B with far fewer unknowns.
Consequently the number of parameters for fitting is

9
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considerably less than in the conventional approaches
without sacrificing the accuracy of the calculated
enhancement factors. Thus the number of experiments
required to get b and B values is considerably reduced.

(b) The enhancement factors calculated are effective values;
it is believed by the author that experimental values
inherently contain correlation effects. An illustration was
given of how to estimate the impurity correlation factor
from beff.

(c) The small number of unknowns in the equations allows
calculation of b and B values at various temperatures
which have not be determined experimentally.
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Appendix A

Let us assume that the correlation factor in a dilute alloy as
influenced by concentration can be expanded in the form of

f (c) = f0 + ∂ f

∂c

∣
∣
∣∣
c=0

c + · · · . (A.1)

Denoting ∂ f
∂c by A, neglecting the higher terms in

equation (A.1) the quotient f0

f (c) of equation (6) can be written
as

f0

f0 + Ac
= 1

1 + A(c)
f0

. (A.2)

With the approximation of 1
1+x = 1 − x + x2 − · · ·, when

Ac/ f0 < 1, (A.2) can be written as

1

1 + A(c)
f0

= 1 − Ac

f0
+

(
Ac

f0

)2

− · · · . (A.3)

Again neglecting the higher terms in the quotient Ac/ f0,
retaining only the two first terms, substituting into equation (6)
and multiplying through with [1+bc], one obtains equation (8)
as

�(c) = 14ω0 exp
(
− g

kT

) [
1 + c

(
b − A

f0

)]
. (A.4)

The correlation relation of (A.1) can also be applied for
solute diffusion in the form of

f2(c) = f2(0) + ∂ f2

∂c

∣
∣
∣
∣
c=0

c + · · · . (A.5)

Again in a manner similar to the above and using the
appropriate notations we can write

�2(c) = 14ω2 exp

(
− g + �g

kT

) [
1 + c

(
B − F

f2(0)

)]
.

(A.6)
In this case F represents ∂ f2

∂c .

Appendix B

The equality of (10b) is based on equation (10) and the
assumption of (10a) that ω′

3 = ω′′
3 = ω5. It is possible to

write that

ω′
4 = ω′

3 exp(−�g/kT ) = ω5 exp(−�g/kT ), (B.1)

but also
ω6 = ω5(−�g/kT ), (B.2)

thus
ω′

4 = ω6. (B.3)

Similarly,

ω′′
4 = ω′′

3 exp(−�g/kT ) = ω5 exp(−�g/kT ), (B.4)

but also as above in (B.2) ω6 = ω5(−�g/kT ) or

ω′′
4 = ω6, (B.5)

consequently
ω′

4 = ω′′
4 = ω6. (B.6)

Appendix C. Jumps of an FNN vacancy

The number of solvent jumps per unit time associated with
the vacancies at FNN sites with the frequencies indicated in
equation (11a) can be obtained as follows:

In the model suggested 14 sites are assumed to be
equivalent. Of these eight sites are at a distance of a(3)1/2/2,
i.e. at the corners of a unit cell, and six are at a distance ‘a’ from
the RS, respectively. All vacancy–FNN solvent exchanges are
considered to occur with ω3 frequencies. Six such jumps are
possible of which (a) three exchanges bring the vacancy in any
of the −x , y, z directions to a distance ‘a’ of the RS and are
of length a

√
3

2 and (b) a further three vacancy–FNN jumps of
this type are possible of length ‘a’ in any of the x , −y, −z
directions bringing the vacancy again to an FNN site at a a

√
3

2
distance from the RS.

Further we have seven escape jumps of the vacancy from
the RS as follows: three ω5 jumps of lengths ‘a’ which
dissociates the vacancy from the RS and brings it to a 3rd NN;
three ω′

3 jumps of length a(3)1/2/2 to 2nd NN and one ω′′
3 jump

also of length a(3)1/2/2 but this escape jump of the vacancy
brings it to a 4th NN site of the RS, respectively. However, by
equation (10a) the ω′

3, ω
′′
3 and ω5 jump frequencies are equal,

resulting in equation (11b). Clearly the bond vacancies, i.e.,
those that are at the first coordination shell are associated with
equation (11a).
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